Packing Anchored Rectangles

Vincent Bian Mentor: Tanya Khovanova

Poolesville High School

May 20, 2018

Vincent Bian

Packing Anchored Rectangles

May 20, 2018 1 / 17

• Consider $[0,1]^2$

<ロ> (日) (日) (日) (日) (日)

- Consider $[0,1]^2$
- n points in square

イロト イヨト イヨト イヨト

- Consider [0, 1]²
- *n* points in square
- Includes (0,0)

• • • • • • • • • • • •

- Consider [0, 1]²
- *n* points in square
- Includes (0,0)

• Draw rectangles

- Consider [0, 1]²
- n points in square
- Includes (0,0)

- Draw rectangles
- Restrictions:

- Consider [0, 1]²
- *n* points in square
- Includes (0,0)

- Draw rectangles
- Restrictions:
 - Rectangle has point on lower left

御 と く ヨ と く

- Consider $[0, 1]^2$
- n points in square
- Includes (0,0)

- Draw rectangles
- Restrictions:
 - Rectangle has point on lower left
 - No overlap

- Consider [0, 1]²
- *n* points in square
- Includes (0,0)

- Draw rectangles
- Restrictions:
 - Rectangle has point on lower left
 - No overlap
 - No points on interior

< ∃ > < -

Goal is to maximize total area of rectangles

<ロ> (日) (日) (日) (日) (日)

Goal is to maximize total area of rectangles

Conjecture (Freedman, 1968)

We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Goal is to maximize total area of rectangles

Conjecture (Freedman, 1968)

We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Area = 0.6

Vincent Bian

Goal is to maximize total area of rectangles

Conjecture (Freedman, 1968)

We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Area = 0.6

$$\mathsf{Area}=0.816$$

Vincent Bian

Packing Anchored Rectangles

- ∢ ∃ ▶

Goal is to maximize total area of rectangles

Conjecture (Freedman, 1968)

We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Area =	= 0.6
--------	-------

Area $= 0$.	816
--------------	-----

Area = 0.51								
•	æ	Þ	•	E	Þ	Ξ.	うく	

	cei		

Packing Anchored Rectangles

May 20, 2018 3 / 17

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

The conjecture is tight

► < ∃ ►</p>

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

The conjecture is tight

Dumitrescu and Tóth showed greedy algorithm gets 9% in 2012.

< 🗇 🕨 < 🖃 🕨

• Sort points by sum of coordinates

イロト イポト イヨト イヨト

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

- - E

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

-

< 🗇 🕨 < 🖃 🕨

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

-

< 🗇 🕨 < 🖃 🕨

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Area = 0.7

-

< A > < > > <

Definition

An anchored rectangle is *maximal* if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Definition

An anchored rectangle is *maximal* if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Definition

An anchored rectangle is *maximal* if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Definition

An anchored rectangle is *maximal* if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Suffices to only consider maximal rectangles

	ent	

Definition

			•	
	•			
•				
		•		

Definition

Definition

Definition

Permutations

Definition

The *permutation* of a set of points is the order of their *y*-coordinates when the *x*-coordinates are sorted

Permutations

Definition

The *permutation* of a set of points is the order of their *y*-coordinates when the *x*-coordinates are sorted

(2, 3, 1, 4)

incent	

Permutations

Definition

The *permutation* of a set of points is the order of their *y*-coordinates when the *x*-coordinates are sorted

(2, 3, 1, 4)

Some permutations far easier to deal with

Vincent Bian

Conjecture proved for some permutations:

Increasing

イロト イヨト イヨト イヨト

Conjecture proved for some permutations:

- Increasing
- Decreasing

-

Conjecture proved for some permutations:

- Increasing
- Decreasing
- Cliff

(日) (同) (三) (三)

Conjecture proved for some permutations:

- Increasing
- Decreasing
- Cliff
- Mountain

- 4 同 6 4 日 6 4 日 6

$$n = 5$$

Vincent Bian

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

May 20, 2018 9 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

n = 5 *n* = 50

Theorem

In the increasing case with n points, we can fill at least $\frac{1}{2} + \frac{1}{2n}$ of the square.

	4	・ロット 4回ット 4回ット 4回ット 4日・
Vincent Bian	Packing Anchored Rectangles	May 20, 2018 9 / 17

n = 5 n = 50

Theorem

In the increasing case with n points, we can fill at least $\frac{1}{2} + \frac{1}{2n}$ of the square. Equality iff $P_i = (\frac{i}{n}, \frac{i}{n})$, where $1 \le i \le n - 1$.

(日) (同) (三) (三)

Results hold for all rectangles

イロト イ団ト イヨト イヨト

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto \left(\frac{x}{a}, \frac{y}{b}\right)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto \left(\frac{x}{a}, \frac{y}{b}\right)$

< ロ > < 同 > < 三 > < 三

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto \left(\frac{x}{a}, \frac{y}{b}\right)$

V	ince	nt l	Biar

-

3

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto \left(\frac{x}{a}, \frac{y}{b}\right)$

Packing density preserved

17		D'
- VI	ncent	: Bian

-

3

$$n = 10$$

Vincent Bian

May 20, 2018 11 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

$$n = 10$$

n = 150

May 20, 2018 11 / 17

Theorem

In the decreasing case with n points, we can fill at least $1 - (1 - \frac{1}{n})^n$ of the square.

Theorem

In the decreasing case with n points, we can fill at least $1 - (1 - \frac{1}{n})^n$ of the square.

Equality iff
$$\mathsf{P}_i=\left(\left(1-rac{1}{n}
ight)^{n-i},\left(1-rac{1}{n}
ight)^i
ight)$$
, where $1\leq i\leq n-1$.

3

(日) (同) (三) (三)

Theorem

In the decreasing case with n points, we can fill at least $1 - (1 - \frac{1}{n})^n$ of the square.

Equality iff
$$\mathsf{P}_i=\left(\left(1-rac{1}{n}
ight)^{n-i},\left(1-rac{1}{n}
ight)^i
ight)$$
, where $1\leq i\leq n-1$.

Area approaches $1-rac{1}{e}$

3

(日) (同) (三) (三)

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The *staircase region* is the set of points above and to the right of at least one point in the final decreasing run.

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The *staircase region* is the set of points above and to the right of at least one point in the final decreasing run.

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The *staircase region* is the set of points above and to the right of at least one point in the final decreasing run.

Definition

The *final decreasing run* is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The *staircase region* is the set of points above and to the right of at least one point in the final decreasing run.

Three dots

When n = 3, points are increasing or decreasing

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Three dots

When n = 3, points are increasing or decreasing

Area
$$\geq \frac{2}{3}$$

→ < Ξ →</p>

- ∢ ≣ →

Three dots

When n = 3, points are increasing or decreasing

▶ ◀ ≧ ▶ ≧ ∽ ९. May 20, 2018 13 / 17

イロト イヨト イヨト

Three dots

When n = 3, points are increasing or decreasing

Minimum area when n = 3 is $\frac{2}{3} > \frac{1}{2}$.

▶ ◀ ≧ ▶ ≧ ∽ ९. May 20, 2018 13 / 17

Image: A math a math

Cliff

$$Area = 0.5874$$

Vincent Bian

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - 釣ぬ(で)

Cliff

$$Area = 0.5874$$

 $\mathsf{Area}=0.5376$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Theorem

In the cliff case, we can fill more than $\frac{1}{2}$ of the square.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

In the cliff case, we can fill more than $\frac{1}{2}$ of the square.

Minimum area and quality case complicated

Vincent Bian

Packing Anchored Rectangles

▶ ▲ ■ ▶ ■ ∽ ೩ 여 May 20, 2018 14 / 17

Mountain

$$Area = 0.75$$

Vincent Bian

Packing Anchored Rectangles

May 20, 2018 15 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Mountain

Area = 0.75

Theorem

In the mountain case, we can fill more than $\frac{1}{2}$ of the square.

v	'inc	en	t I	в	an

æ

(日) (同) (三) (三)

Mountain

Area = 0.75

Theorem

In the mountain case, we can fill more than $\frac{1}{2}$ of the square.

Sharper bounds and equality case currently unknown

Vincent Bian

Packing Anchored Rectangles

May 20, 2018 15 / 17

3

In the near future:

• Sharper bounds for mountain case

(日) (同) (三) (三)

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

-

- ∢ ∃ ▶

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

-

- ₹ 🗦 🕨

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

• Consider more types of permutations

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

• Consider more types of permutations In the far future:

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

• Consider more types of permutations

In the far future:

Prove full conjecture

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

• Consider more types of permutations

In the far future:

- Prove full conjecture
- Squares instead of rectangles

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

• Consider more types of permutations

In the far future:

- Prove full conjecture
- Squares instead of rectangles
- Extend to more dimensions

Vincent Bian

Packing Anchored Rectangles

May 20, 2018 16 / 17

• Dr. Yufei Zhao

incen	

<ロ> (日) (日) (日) (日) (日)

- Dr. Yufei Zhao
- Dr. Tanya Khovanova

<ロ> (日) (日) (日) (日) (日)

- Dr. Yufei Zhao
- Dr. Tanya Khovanova
- Dr. Elina Robeva

(日) (同) (三) (三)

- Dr. Yufei Zhao
- Dr. Tanya Khovanova
- Dr. Elina Robeva
- The PRIMES program

< 回 ト < 三 ト < 三 ト

- Dr. Yufei Zhao
- Dr. Tanya Khovanova
- Dr. Elina Robeva
- The PRIMES program

Thank you for your attention today.

< ∃ >