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Anchored Rectangles

Consider [0, 1]2

n points in square

Includes (0, 0)

Draw rectangles

Restrictions:

Rectangle has point on lower
left
No overlap
No points on interior
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Goal

Goal is to maximize total area of rectangles

Conjecture (Freedman, 1968)

We can always select a set of anchored rectangles with total area at least
1
2 .

Area = 0.6 Area = 0.816 Area = 0.51
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Past results

Equally spaced points on diagonal get arbitrarily close to 1
2 .

The conjecture is tight

Dumitrescu and Tóth showed greedy algorithm gets 9% in 2012.
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Greedy Algorithm

Sort points by sum of coordinates

Take biggest rectangle available for each point, starting from the
highest

Area = 0.7
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Maximal Anchored Rectangles

Definition

An anchored rectangle is maximal if its width and height can’t be
increased without overlapping another rectangle or leaving the unit square.

can be turned into

Suffices to only consider maximal rectangles
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Permutations

Definition

The permutation of a set of points is the order of their y -coordinates when
the x-coordinates are sorted

(2, 3, 1, 4)

Some permutations far easier to deal with
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Types of permutations

Conjecture proved for some
permutations:

Increasing

Decreasing

Cliff

Mountain
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Increasing

n = 5

n = 50

Theorem

In the increasing case with n points, we can fill at least 1
2 + 1

2n of the
square.
Equality iff Pi =

(
i
n ,

i
n

)
, where 1 ≤ i ≤ n − 1.
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Scaling idea

Results hold for all rectangles

a× b rectangle: (x , y) 7→
(
x
a ,

y
b

)

Packing density preserved
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Decreasing

n = 10

n = 150

Theorem

In the decreasing case with n points, we can fill at least 1−
(
1− 1

n

)n
of

the square.

Equality iff Pi =
((

1− 1
n

)n−i
,
(
1− 1

n

)i)
, where 1 ≤ i ≤ n − 1.

Area approaches 1− 1
e
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Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that
includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least
one point in the final decreasing run.

Can always fill the staircase region
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Three dots

When n = 3, points are increasing or decreasing

Area ≥ 2
3

Area ≥ 19
27

Minimum area when n = 3 is 2
3 > 1

2 .
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Cliff

Area = 0.5874

Area = 0.5376

Theorem

In the cliff case, we can fill more than 1
2 of the square.

Minimum area and quality case complicated
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Mountain

Area = 0.75

Theorem

In the mountain case, we can fill more than 1
2 of the square.

Sharper bounds and equality case currently unknown
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Future Research

In the near future:

Sharper bounds for mountain case

Consider split-layer permutations

Consider more types of permutations

In the far future:

Prove full conjecture

Squares instead of rectangles

Extend to more dimensions
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