Packing Anchored Rectangles

Vincent Bian
Mentor: Tanya Khovanova

Poolesville High School

May 20, 2018

Anchored Rectangles

- Consider $[0,1]^{2}$

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square
- Includes $(0,0)$

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square
- Includes $(0,0)$
- Draw rectangles

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square
- Includes $(0,0)$
- Draw rectangles
- Restrictions:

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square
- Includes $(0,0)$
- Draw rectangles
- Restrictions:
- Rectangle has point on lower left

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square
- Includes $(0,0)$
- Draw rectangles
- Restrictions:
- Rectangle has point on lower left
- No overlap

Anchored Rectangles

- Consider $[0,1]^{2}$
- n points in square
- Includes $(0,0)$
- Draw rectangles
- Restrictions:
- Rectangle has point on lower left
- No overlap

- No points on interior

Goal

Goal is to maximize total area of rectangles

Goal

Goal is to maximize total area of rectangles
Conjecture (Freedman, 1968)
We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Goal

Goal is to maximize total area of rectangles
Conjecture (Freedman, 1968)
We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Area $=0.6$

Goal

Goal is to maximize total area of rectangles
Conjecture (Freedman, 1968)
We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Area $=0.6$
Area $=0.816$

Goal

Goal is to maximize total area of rectangles
Conjecture (Freedman, 1968)
We can always select a set of anchored rectangles with total area at least $\frac{1}{2}$.

Area $=0.816$

Area $=0.51$

Past results

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

Past results

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

Past results

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

The conjecture is tight

Past results

Equally spaced points on diagonal get arbitrarily close to $\frac{1}{2}$.

The conjecture is tight

Dumitrescu and Tóth showed greedy algorithm gets 9\% in 2012.

Greedy Algorithm

- Sort points by sum of coordinates

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Greedy Algorithm

- Sort points by sum of coordinates
- Take biggest rectangle available for each point, starting from the highest

Area $=0.7$

Maximal Anchored Rectangles

Definition

An anchored rectangle is maximal if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Maximal Anchored Rectangles

Definition

An anchored rectangle is maximal if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Maximal Anchored Rectangles

Definition

An anchored rectangle is maximal if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

can be turned into

Maximal Anchored Rectangles

Definition

An anchored rectangle is maximal if its width and height can't be increased without overlapping another rectangle or leaving the unit square.

Suffices to only consider maximal rectangles

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

$(2,3,1,4)$

Permutations

Definition

The permutation of a set of points is the order of their y-coordinates when the x-coordinates are sorted

$(2,3,1,4)$

Some permutations far easier to deal with

Types of permutations

Conjecture proved for some permutations:

- Increasing

Types of permutations

Conjecture proved for some permutations:

- Increasing
- Decreasing

Types of permutations

Conjecture proved for some permutations:

- Increasing
- Decreasing
- Cliff

Types of permutations

Conjecture proved for some permutations:

- Increasing
- Decreasing
- Cliff
- Mountain

Increasing

$$
n=5
$$

Increasing

$$
n=5
$$

$$
n=50
$$

Increasing

$n=5$

$$
n=50
$$

Theorem
In the increasing case with n points, we can fill at least $\frac{1}{2}+\frac{1}{2 n}$ of the square.

Increasing

$$
n=5
$$

$$
n=50
$$

Theorem

In the increasing case with n points, we can fill at least $\frac{1}{2}+\frac{1}{2 n}$ of the square.
Equality iff $P_{i}=\left(\frac{i}{n}, \frac{i}{n}\right)$, where $1 \leq i \leq n-1$.

Scaling idea

Results hold for all rectangles

Scaling idea

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto\left(\frac{x}{a}, \frac{y}{b}\right)$

Scaling idea

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto\left(\frac{x}{a}, \frac{y}{b}\right)$

Scaling idea

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto\left(\frac{x}{a}, \frac{y}{b}\right)$

Scaling idea

Results hold for all rectangles $a \times b$ rectangle: $(x, y) \mapsto\left(\frac{x}{a}, \frac{y}{b}\right)$

Packing density preserved

Decreasing

$$
n=10
$$

Decreasing

$n=10$

$$
n=150
$$

Decreasing

$n=10$

$$
n=150
$$

Theorem
In the decreasing case with n points, we can fill at least $1-\left(1-\frac{1}{n}\right)^{n}$ of the square.

Decreasing

$$
n=10
$$

$$
n=150
$$

Theorem
In the decreasing case with n points, we can fill at least $1-\left(1-\frac{1}{n}\right)^{n}$ of the square.
Equality iff $P_{i}=\left(\left(1-\frac{1}{n}\right)^{n-i},\left(1-\frac{1}{n}\right)^{i}\right)$, where $1 \leq i \leq n-1$.

Decreasing

$$
n=10
$$

$$
n=150
$$

Theorem
In the decreasing case with n points, we can fill at least $1-\left(1-\frac{1}{n}\right)^{n}$ of the square.
Equality iff $P_{i}=\left(\left(1-\frac{1}{n}\right)^{n-i},\left(1-\frac{1}{n}\right)^{i}\right)$, where $1 \leq i \leq n-1$.
Area approaches $1-\frac{1}{e}$

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Can always fill the staircase region

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Can always fill the staircase region

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Can always fill the staircase region

Staircase regions

Definition

The final decreasing run is the maximal consecutive decreasing run that includes the rightmost points.

Definition

The staircase region is the set of points above and to the right of at least one point in the final decreasing run.

Can always fill the staircase region

Three dots

When $n=3$, points are increasing or decreasing

Three dots

When $n=3$, points are increasing or decreasing

Area $\geq \frac{2}{3}$

Three dots

When $n=3$, points are increasing or decreasing

Area $\geq \frac{2}{3}$

Area $\geq \frac{19}{27}$

Three dots

When $n=3$, points are increasing or decreasing

Area $\geq \frac{2}{3}$

Area $\geq \frac{19}{27}$

Minimum area when $n=3$ is $\frac{2}{3}>\frac{1}{2}$.

Cliff

Area $=0.5874$

Cliff

Area $=0.5874$

Area $=0.5376$

Cliff

Area $=0.5874$

Area $=0.5376$

Theorem

In the cliff case, we can fill more than $\frac{1}{2}$ of the square.

Cliff

Area $=0.5874$

Area $=0.5376$

Theorem

In the cliff case, we can fill more than $\frac{1}{2}$ of the square.

Minimum area and quality case complicated

Mountain

$$
\text { Area }=0.75
$$

Mountain

$$
\text { Area }=0.75
$$

Theorem
In the mountain case, we can fill more than $\frac{1}{2}$ of the square.

Mountain

$$
\text { Area }=0.75
$$

Theorem
In the mountain case, we can fill more than $\frac{1}{2}$ of the square.

Sharper bounds and equality case currently unknown

Future Research

In the near future:

- Sharper bounds for mountain case

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

- Consider more types of permutations

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

- Consider more types of permutations

In the far future:

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

- Consider more types of permutations

In the far future:

- Prove full conjecture

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

- Consider more types of permutations

In the far future:

- Prove full conjecture
- Squares instead of rectangles

Future Research

In the near future:

- Sharper bounds for mountain case
- Consider split-layer permutations

- Consider more types of permutations

In the far future:

- Prove full conjecture
- Squares instead of rectangles
- Extend to more dimensions

Acknowledgements

- Dr. Yufei Zhao

Acknowledgements

- Dr. Yufei Zhao
- Dr. Tanya Khovanova

Acknowledgements

- Dr. Yufei Zhao
- Dr. Tanya Khovanova
- Dr. Elina Robeva

Acknowledgements

- Dr. Yufei Zhao
- Dr. Tanya Khovanova
- Dr. Elina Robeva
- The PRIMES program

Acknowledgements

- Dr. Yufei Zhao
- Dr. Tanya Khovanova
- Dr. Elina Robeva
- The PRIMES program

Thank you for your attention today.

